Acoustic Stirling Heat Engine

Scott Backhaus, Greg Swift, and Chris Espinoza

Our new heat engine efficiently converts heat

to intense acoustic power in a simple device that comprises only pipes and conventional heat exchangers and has no moving parts. The acoustic power can be used directly in acoustic refrigerators or pulse-tube refrigerators to provide heat-driven refrigeration with no moving parts, or it can be used to generate electricity via a linear alternator or other electroacoustic power transducer. The engine's 30% efficiency and high reliability make medium-sized, natural-gas, liquefaction plants (with a capacity of up to a million gallons per day) and residential cogeneration economically feasible.

resonator extends off to the right. Combining low-tech hardware and an elegant engineering design, our no-moving-parts engine produces acoustic power from heat with an efficiency of 30%. The inset shows the engine's main welded shell-and-tube heat exchanger.

Applications

The acoustic Stirling heat engine can be used for

- combustion-powered liquefaction of natural gas to recover gas now flared at remote and offshore oil wells;
- residential cogeneration for more efficient energy use;
- local, combustion-powered, air separation and liquefaction to reduce transportation costs for industrial gases; and
- solar- or waste-heat-powered generation of electricity.

Benefits

The benefits of the acoustic Stirling heat engine are that it is

- more efficient than other no-moving-parts heat engines;
- made from inexpensive, low-tech hardware;
- · highly reliable; and
- environmentally benign.

Availability of applications for commercial licensing

• Residential cogeneration for more efficient energy use.

Acoustic network loop for our new

hybrid acoustic Stirling heat engine.

 Solar - or waste-heat-powered generation of electricity.

Encumbered:

 Cooling and liquefaction of industrial gases, including natural gas.

Technical contact: Greg Swift, swift@lanl.gov Phone: (505) 665-0640

Technology transfer contact: David J. Salazar, davidj@lanl.gov Phone: (505) 665-6697

